3.7.16 \(\int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\) [616]

3.7.16.1 Optimal result
3.7.16.2 Mathematica [A] (verified)
3.7.16.3 Rubi [A] (verified)
3.7.16.4 Maple [B] (warning: unable to verify)
3.7.16.5 Fricas [B] (verification not implemented)
3.7.16.6 Sympy [F]
3.7.16.7 Maxima [F]
3.7.16.8 Giac [F(-2)]
3.7.16.9 Mupad [F(-1)]

3.7.16.1 Optimal result

Integrand size = 35, antiderivative size = 229 \[ \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=-\frac {\sqrt {i a-b} (i A-B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {2 \sqrt {b} B \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {\sqrt {i a+b} (i A+B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d} \]

output
-(I*A-B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*(I* 
a-b)^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+2*B*arctanh(b^(1/2)*tan(d*x 
+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*b^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2 
)/d-(I*A+B)*arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)) 
*(I*a+b)^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d
 
3.7.16.2 Mathematica [A] (verified)

Time = 0.86 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.04 \[ \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (\sqrt [4]{-1} \left (\sqrt {-a+i b} (i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )+\sqrt {a+i b} (-i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )\right ) \sqrt {a+b \tan (c+d x)}+2 \sqrt {a} \sqrt {b} B \text {arcsinh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+\frac {b \tan (c+d x)}{a}}\right )}{d \sqrt {a+b \tan (c+d x)}} \]

input
Integrate[Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]) 
,x]
 
output
(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-1)^(1/4)*(Sqrt[-a + I*b]*(I*A + 
B)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c 
+ d*x]]] + Sqrt[a + I*b]*((-I)*A + B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqr 
t[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])*Sqrt[a + b*Tan[c + d*x]] + 2*S 
qrt[a]*Sqrt[b]*B*ArcSinh[(Sqrt[b]*Sqrt[Tan[c + d*x]])/Sqrt[a]]*Sqrt[1 + (b 
*Tan[c + d*x])/a]))/(d*Sqrt[a + b*Tan[c + d*x]])
 
3.7.16.3 Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.87, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4729, 3042, 4097, 3042, 4099, 3042, 4098, 104, 216, 219, 4117, 65, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx\)

\(\Big \downarrow \) 4097

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {a A-b B+(A b+a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+b B \int \frac {\tan ^2(c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\int \frac {a A-b B+(A b+a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+b B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} (a+i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a-i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+b B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {1}{2} (a+i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} (a-i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+b B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(a-i b) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {(a+i b) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+b B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(a+i b) (A+i B) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {(a-i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+b B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(a-i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+b B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {(a+i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (b B \int \frac {\tan (c+d x)^2+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {(a+i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {(a-i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )\)

\(\Big \downarrow \) 4117

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {b B \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{d}+\frac {(a+i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {(a-i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )\)

\(\Big \downarrow \) 65

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {2 b B \int \frac {1}{1-\frac {b \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {(a+i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {(a-i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(a+i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {(a-i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}+\frac {2 \sqrt {b} B \text {arctanh}\left (\frac {\sqrt {b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\right )\)

input
Int[Sqrt[Cot[c + d*x]]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]
 
output
(((a + I*b)*(A + I*B)*ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b 
*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (2*Sqrt[b]*B*ArcTanh[(Sqrt[b]*Sqrt[Ta 
n[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/d + ((a - I*b)*(A - I*B)*ArcTanh[( 
Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a + b 
]*d))*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]
 

3.7.16.3.1 Defintions of rubi rules used

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4097
Int[(Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)]))/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> In 
t[Simp[a*A - b*B + (A*b + a*B)*Tan[e + f*x], x]/(Sqrt[a + b*Tan[e + f*x]]*S 
qrt[c + d*Tan[e + f*x]]), x] + Simp[b*B   Int[(1 + Tan[e + f*x]^2)/(Sqrt[a 
+ b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 
0]
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.7.16.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.41 (sec) , antiderivative size = 2178428, normalized size of antiderivative = 9512.79

\[\text {output too large to display}\]

input
int(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)
 
output
result too large to display
 
3.7.16.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8075 vs. \(2 (178) = 356\).

Time = 2.44 (sec) , antiderivative size = 16183, normalized size of antiderivative = 70.67 \[ \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.7.16.6 Sympy [F]

\[ \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {a + b \tan {\left (c + d x \right )}} \sqrt {\cot {\left (c + d x \right )}}\, dx \]

input
integrate(cot(d*x+c)**(1/2)*(a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)
 
output
Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))*sqrt(cot(c + d*x)), 
 x)
 
3.7.16.7 Maxima [F]

\[ \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {b \tan \left (d x + c\right ) + a} \sqrt {\cot \left (d x + c\right )} \,d x } \]

input
integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algo 
rithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)*sqrt(b*tan(d*x + c) + a)*sqrt(cot(d*x + c)) 
, x)
 
3.7.16.8 Giac [F(-2)]

Exception generated. \[ \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(d*x+c)^(1/2)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algo 
rithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.7.16.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx=\int \sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \]

input
int(cot(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2),x)
 
output
int(cot(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^(1/2), x)